Skip to main content

Infix to Postfix Expression Conversion

With a given Infix Expression, we will see how to convert Infix Expression into Postfix Expression using stack.
 

Algorithm to convert Infix expression to Postfix expression:

In this algorithm, we will use operatorStack to store operators during the conversion. The step are as follows:
  • Initialize empty operatorStack
  • While the end of input infix string
    • symbol = next input character
    • If symbol is an operand
      • add symbol to the postfix string
    • Else
      • While( operatorStack is not empty && precedence of top character of operatorStack is higher than symbol)
        • topsymbol = pop the operatorStack
        • add topsymbol to the postfix string
      • End While
      • If (operatorStack is empty || symbol is not equal to '(' )
        • push symbol into operatorStack
      • Else
        • pop the operatorStack
      • End If
    • End If
    • While the operatorStack is not empty
      • topsymbol = pop the operatorStack
      • add topsymbol to the postfix string
    • End While
 


 

Function to convert Infix expression to Postfix expression:


void infix_to_postfix(char *infix_str, char *postfix_str){
 int i = -1, j = -1;
 STACK stk;
 stk.top = -1;
 while(infix_str[++i]){
  if(infix_str[i] == ' '){
   continue;
  }
  if( ischar(infix_str[i]) ){
   postfix_str[++j] = infix_str[i];
  }
  else{
   while( !empty_stack(&stk) && precedence( top_of_stack(&stk), infix_str[i]) ){
   postfix_str[++j] = pop(&stk);
   }
   if(empty_stack(&stk) || infix_str[i] != ')'){
    push(&stk,infix_str[i]);
   }
   else{
    pop(&stk);
   }
  }
 }
 while(!empty_stack(&stk)){
  postfix_str[++j] = pop(&stk);
 }
 postfix_str[++j] = '\0';
}

 

Program to convert Infix expression to Postfix expression:


#include <stdio.h>
#include <stdlib.h>
#define STACK_SIZE 50

typedef struct{
 int top;
 char stack[STACK_SIZE];
} STACK;

void push(STACK *, char );
char pop(STACK *);
void infix_to_postfix(char *, char*);
char top_of_stack(STACK *);
int ischar(char );
int empty_stack(STACK*);
int precedence(char,char);

int main(){
 char *infix_str = "A+(B*C)/D";
 char postfix_str[100];
 infix_to_postfix(infix_str, postfix_str);
 printf("Infix Expression   : %s\n", infix_str);
 printf("Postfix Expression : %s\n", postfix_str);
 return 0;
}

// return true when op1 has higher precedence over op2
int precedence(char op1, char op2){ 
 char *sym = "/*+-";
 int i1 = -1, i2 = -1,i = -1;
 if(op1 == '(')
  return 0;
 if(op2 == '('){
  if(op1 != ')')
   return 0;
  return 1;
 }
 if(op2 == ')'){
  if(op1 != '(')
   return 1;
  return 0;
 }
 if(op1 == ')')
  exit(1);
 while(sym[++i]){
  if(op1 == sym[i])
   i1 = i;
  if(op2 == sym[i])
   i2 = i;
 }
 return i1 < i2;
}

void infix_to_postfix(char *infix_str, char *postfix_str){
 int i = -1, j = -1;
 STACK stk;
 stk.top = -1;
 while(infix_str[++i]){
  if(infix_str[i] == ' '){
   continue;
  }
  if( ischar(infix_str[i]) ){
   postfix_str[++j] = infix_str[i];
  }
  else{
   while( !empty_stack(&stk) && precedence( top_of_stack(&stk), infix_str[i]) ){
   postfix_str[++j] = pop(&stk);
   }
   if(empty_stack(&stk) || infix_str[i] != ')'){
    push(&stk,infix_str[i]);
   }
   else{
    pop(&stk);
   }
  }
 }
 while(!empty_stack(&stk)){
  postfix_str[++j] = pop(&stk);
 }
 postfix_str[++j] = '\0';
}


char top_of_stack(STACK *s){
 return s->stack[s->top];
}

int empty_stack(STACK *stk){
 return stk->top == -1;
}

int ischar(char c){
 return  ( (c >= 'a') && (c <= 'z') ) || 
   ( (c >= 'A') && (c <= 'Z') ) || 
   ( (c >= '0') && (c <= '9') );
}

void push(STACK *s, char c){
 if(s->top == STACK_SIZE-1){
  printf("Stack Overflow\n");
  exit(1);
 }
 else{
  s->stack[++s->top] = c;
 }
}

char pop(STACK *s){
 if(s->top == -1){
  printf("Stack Underflow\n");
  exit(1);
 }
 else{
  return s->stack[s->top--];
 }
}

 
Infix Expression   : A+(B*C)/D
Postfix Expression : ABC*D/+
 

Comments

Popular posts from this blog

Prefix to Infix Conversion

With a given Prefix Expression, we will see how to convert Prefix Expression into Infix Expression using stack.   Algorithm to convert Prefix Expression to Infix Expression: In this algorithm, we will use stack to store operands during the conversion. The step are as follows: Read the prefix string While the end of prefix string scanned from right to left symb = the current character If symb is an operator poped_sym1 = pop the stack poped_sym2 = pop the stack concat the string  STR = ( poped_sym1 )+ ( operator )+( poped_sym2 ) push the string STR into stack Else push the operand symb into stack End If End While infix_str = pop the stack   Function to convert Prefix Expression to Infix Expression: void prefix_to_infix(char prefix[], char infix[]){ char op[2]; //operator string char poped1[MAX]; char poped2[MAX]; char temp[MAX]; int i = strlen(prefix); op[1] = '\0'; while(--i != -1){ if(prefix[i] == ' '){ continue; } if(isoper

Circular Doubly Link List

Circular Doubly Link List is data structure which contains a list of node containing info part and links to the next and previous node. In CDLL, last node's next pointer points to the first node and first node's previous pointer points to last node of the list. This  makes traversal in both direction of CDLL.  Before going to discuss the operation on circular doubly link list, we will first see the basic structure of the data type and see how it could be represented in c programming. First we will see the how the node or element of circular doubly link list is represented. See the image below: The component of circular doubly list node: info : It contains the actual information next : This field points to the next node in the list prev  : This field points to the previous node in the list Now we see how the circular doubly link list is represented. See the image below: The component of circular doubly link list are: START  pointer points to the first node of the lis

Insert node at last position in doubly link list

Now we will see how to insert a new node at the last position of doubly link list. Algorithm for insertion at last position in doubly link list: In this algorithm, START is pointer to first node of list and PTR is the node to be inserted at last. The steps are as follows: Create new node PTR Set the info field of PTR Set PTR->NEXT = NULL If list is empty i.e. START == NULL Set START = PTR Set PTR->PREV = NULL Else Traverse the list for last node into TEMP pointer Set PTR->PREV = TEMP Set TEMP->NEXT = PTR End If;     Function to insert node at last position in doubly link list: void insertAtLast(NODE **start, int info){ NODE *ptr = (NODE*) malloc(sizeof(NODE)); NODE *temp = *start; ptr->info = info; ptr->next = NULL; if(*start == NULL){ *start = ptr; ptr->prev = NULL; } else{ while(temp->next != NULL){ temp = temp->next; } ptr->prev = temp; temp->next = ptr; } }   Program to insert at last position in the do