Skip to main content

Postfix Expression Evaluation

With a given Postfix Expression, we will show you how to evaluate a postfix expression using stack.
 

Algorithm to evaluate postfix expression:

In this algorithm, we will use stack to store operands. The step are as follows:
  • Get the Postfix Expression String
  • While the end of Postfix Expression string
    • If the current character is operand
      • Push it into Stack
    • End If
    • If the current character is operator
      • Pop stack for second_operand
      • Pop stack for first_operand
      • Evaluate the expression (first_operand)(operator)(second_operand) and push the result into stack
    • End If
  • End While
  • Pop stack for result and return it
 
 


 

Function to Evaluate Postfix Expression:


double evaluate_postfix_exp(char *poststr){
 STACK stk; //stack for pushing operands
 int i = -1;
 double op1, op2;
 stk.top = -1; //top of stack
 while(poststr[++i]){
  if(poststr[i] == ' '){ //escape space
   continue;
  }
  if(isdig(poststr[i])){
   push( &stk, (double)(poststr[i]-'0')/*char to int*/ );
  }
  else{
   op2 = pop(&stk); // first poped number will be used as 2nd operand
   op1 = pop(&stk);
   push( &stk, operation( poststr[i], op1, op2 ) );
  }
 }
 return pop( &stk ); //answer of evaluation
}

 

Program to Evaluate Postfix Expression:


#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define STACK_SIZE 50

typedef struct{
 int top;
 double stack[STACK_SIZE];
} STACK;

double evaluate_postfix_exp(char *);
void push(STACK *, double );
double pop(STACK *);
int isdig(char);
double operation(char, double, double);

int main(){
 double answer;
 char *postfix_str = "1 2 + 3 ^ 4 *"; //108
 answer = evaluate_postfix_exp(postfix_str);
 printf("The answer of postfix expression \"%s\" =   %.2f", postfix_str, answer);
 return 0;
}

double evaluate_postfix_exp(char *poststr){
 STACK stk; //stack for pushing operands
 int i = -1;
 double op1, op2;
 stk.top = -1; //top of stack
 while(poststr[++i]){
  if(poststr[i] == ' '){ //escape space
   continue;
  }
  if(isdig(poststr[i])){
   push( &stk, (double)(poststr[i]-'0')/*char to int*/ );
  }
  else{
   op2 = pop(&stk); // first poped number will be used as 2nd operand
   op1 = pop(&stk);
   push( &stk, operation( poststr[i], op1, op2 ) );
  }
 }
 return pop( &stk ); //answer of evaluation
}

int isdig(char c){ //whether the c is number
 return ( (c >= '0') && (c <= '9') );
}

void push(STACK *s, double num){
 if(s->top == STACK_SIZE-1){
  printf("Stack Overflow\n");
 }
 else{
  s->stack[++s->top] = num;
 }
}

double pop(STACK *s){
 if(s->top == -1){
  printf("Stack Underflow\n");
  exit(2);
 }
 else{
  return s->stack[s->top--];
 }
}

double operation(char c, double op1, double op2){
 switch(c){
  case '+' : return op1+op2;
  case '-' : return op1-op2;
  case '*' : return op1*op2;
  case '/' : return op1/op2;
  case '^' : return pow(op1, op2);
  default  : printf("Invalid operator %c used", c);
      exit(1);
 }
}

 
The answer of postfix expression "1 2 + 3 ^ 4 *" =   108.00
 

Comments

Popular posts from this blog

Prefix to Infix Conversion

With a given Prefix Expression, we will see how to convert Prefix Expression into Infix Expression using stack.   Algorithm to convert Prefix Expression to Infix Expression: In this algorithm, we will use stack to store operands during the conversion. The step are as follows: Read the prefix string While the end of prefix string scanned from right to left symb = the current character If symb is an operator poped_sym1 = pop the stack poped_sym2 = pop the stack concat the string  STR = ( poped_sym1 )+ ( operator )+( poped_sym2 ) push the string STR into stack Else push the operand symb into stack End If End While infix_str = pop the stack   Function to convert Prefix Expression to Infix Expression: void prefix_to_infix(char prefix[], char infix[]){ char op[2]; //operator string char poped1[MAX]; char poped2[MAX]; char temp[MAX]; int i = strlen(prefix); op[1] = '\0'; while(--i != -1){ if(prefix[i] == ' '){ continue; } if(isoper

Circular Doubly Link List

Circular Doubly Link List is data structure which contains a list of node containing info part and links to the next and previous node. In CDLL, last node's next pointer points to the first node and first node's previous pointer points to last node of the list. This  makes traversal in both direction of CDLL.  Before going to discuss the operation on circular doubly link list, we will first see the basic structure of the data type and see how it could be represented in c programming. First we will see the how the node or element of circular doubly link list is represented. See the image below: The component of circular doubly list node: info : It contains the actual information next : This field points to the next node in the list prev  : This field points to the previous node in the list Now we see how the circular doubly link list is represented. See the image below: The component of circular doubly link list are: START  pointer points to the first node of the lis

Insert node at last position in doubly link list

Now we will see how to insert a new node at the last position of doubly link list. Algorithm for insertion at last position in doubly link list: In this algorithm, START is pointer to first node of list and PTR is the node to be inserted at last. The steps are as follows: Create new node PTR Set the info field of PTR Set PTR->NEXT = NULL If list is empty i.e. START == NULL Set START = PTR Set PTR->PREV = NULL Else Traverse the list for last node into TEMP pointer Set PTR->PREV = TEMP Set TEMP->NEXT = PTR End If;     Function to insert node at last position in doubly link list: void insertAtLast(NODE **start, int info){ NODE *ptr = (NODE*) malloc(sizeof(NODE)); NODE *temp = *start; ptr->info = info; ptr->next = NULL; if(*start == NULL){ *start = ptr; ptr->prev = NULL; } else{ while(temp->next != NULL){ temp = temp->next; } ptr->prev = temp; temp->next = ptr; } }   Program to insert at last position in the do