Skip to main content

Implementation of Stack to store different data types


Here we will see how to implement stack using structure and union to store different datatypes in stack. First we define the basic structure for elements/items to be stored in the stack.

struct Items{
 int ele_type;
 union {
  int ivalue;
  float fvalue;
  char *strvalue;
 } stack_element;
};

In the above code, we have defined a Items structure to store the info about the type of items in ele_type variable and a union variable named stack_element to store the actual value of stack items. In union the, ivalue is used to store the integer value, fvalue to store floating value and strvalue to store the string value. If you wish to add other datatype, you can add any datatype within the union. Now we will define the structure to implement the stack. The code below:

struct Stack{
 int top;
 struct Items element[MAX];
};

In the above code, struct Stack is defined to hold the top of stack and the array of Items structure named element to hold the actual Items defined above. MAX is the stack maximum size. In addition to above two structure we use enum to define the datatypes to be stored in the stack. The code below:

enum {
 INT, FLOAT, STRING
};

In the above enum the INT have value 0, FLOAT have value 1 and STRING have value 2. If we add other datatypes in the stack_element union, there corresponding datatype value must be added to the enum above.

 Push Operation:

The code below show the push operation on stack defined above:

void push(struct Stack *s, struct Items *item){
 if(s->top == MAX-1){
  printf("Stack Overflow\n");
 }
 else{
  s->element[++s->top] = *item;
 }
}

 

 Pop Operation:

The code below show the pop operation on stack defined above:

struct Items pop(struct Stack *s){
 if(s->top == -1){
  printf("Stack Underflow\n");
 }
 else{
  return s->element[s->top--];
 }
}

 

 Displaying the stack elements:

The code below is to display the elements of stack defined above:

void display(struct Stack *s){
 printf("The Stack items are:\n");
 for(int i = 0; i <= s->top; i++){
  printf("The index %d has type = ", i);
  switch(s->element[i].ele_type){
   case INT : printf("INT and value = %d\n", s->element[i].stack_element.ivalue);
     break;
   case FLOAT : printf("FLOAT and value = %f\n", s->element[i].stack_element.fvalue);
     break;
   case STRING : printf("STRING and value = %s\n", s->element[i].stack_element.strvalue);
     break;
   default : printf("Invalid data type\n");
  }
 }
 printf("\n");
}

 

 The main function:

Now we will see the how to call the push, pop and display functions in the main function:

int main(){
 struct Stack s;
 s.top = -1;
 
 struct Items i1;
 i1.ele_type = INT;
 i1.stack_element.ivalue = 2;
 push(&s, &i1);
 display(&s);
 pop(&s);
 return 0;
}

 

Program to implement stack to store different data types:

Here is the complete program to for the implementation:

#include <stdio.h>
#define MAX 10

enum {
 INT, FLOAT, STRING
};

struct Items{
 int ele_type;
 union {
  int ivalue;
  float fvalue;
  char *strvalue;
 } stack_element;
};

struct Stack{
 int top;
 struct Items element[MAX];
};

void display(struct Stack*);
void push(struct Stack *, struct Items *);
struct Items pop(struct Stack*);
int main(){
 struct Stack s;
 s.top = -1;
 
 struct Items i1;
 i1.ele_type = INT;
 i1.stack_element.ivalue = 2;
 
 struct Items i2;
 i2.ele_type = FLOAT;
 i2.stack_element.fvalue = 2.25f;
 
 struct Items i3;
 i3.ele_type = STRING;
 i3.stack_element.strvalue = "Hello World";
 
 push(&s, &i1);
 push(&s, &i2);
 push(&s, &i3);
 
 display(&s);
 
 pop(&s);
 display(&s);
 
 return 0;
}

void push(struct Stack *s, struct Items *item){
 if(s->top == MAX-1){
  printf("Stack Overflow\n");
 }
 else{
  s->element[++s->top] = *item;
 }
}

struct Items pop(struct Stack *s){
 if(s->top == -1){
  printf("Stack Underflow\n");
 }
 else{
  return s->element[s->top--];
 }
}

void display(struct Stack *s){
 printf("The Stack items are:\n");
 for(int i = 0; i <= s->top; i++){
  printf("The index %d has type = ", i);
  switch(s->element[i].ele_type){
   case INT : printf("INT and value = %d\n", s->element[i].stack_element.ivalue);
     break;
   case FLOAT : printf("FLOAT and value = %f\n", s->element[i].stack_element.fvalue);
     break;
   case STRING : printf("STRING and value = %s\n", s->element[i].stack_element.strvalue);
     break;
   default : printf("Invalid data type\n");
  }
 }
 printf("\n");
}

Output:
The Stack items are:
The index 0 has type = INT and value = 2
The index 1 has type = FLOAT and value = 2.250000
The index 2 has type = STRING and value = Hello World

The Stack items are:
The index 0 has type = INT and value = 2
The index 1 has type = FLOAT and value = 2.250000

Comments

Popular posts from this blog

Prefix to Infix Conversion

With a given Prefix Expression, we will see how to convert Prefix Expression into Infix Expression using stack.   Algorithm to convert Prefix Expression to Infix Expression: In this algorithm, we will use stack to store operands during the conversion. The step are as follows: Read the prefix string While the end of prefix string scanned from right to left symb = the current character If symb is an operator poped_sym1 = pop the stack poped_sym2 = pop the stack concat the string  STR = ( poped_sym1 )+ ( operator )+( poped_sym2 ) push the string STR into stack Else push the operand symb into stack End If End While infix_str = pop the stack   Function to convert Prefix Expression to Infix Expression: void prefix_to_infix(char prefix[], char infix[]){ char op[2]; //operator string char poped1[MAX]; char poped2[MAX]; char temp[MAX]; int i = strlen(prefix); op[1] = '\0'; while(--i != -1){ if(prefix[i] == ' '){ continue; } if(isoper

Circular Doubly Link List

Circular Doubly Link List is data structure which contains a list of node containing info part and links to the next and previous node. In CDLL, last node's next pointer points to the first node and first node's previous pointer points to last node of the list. This  makes traversal in both direction of CDLL.  Before going to discuss the operation on circular doubly link list, we will first see the basic structure of the data type and see how it could be represented in c programming. First we will see the how the node or element of circular doubly link list is represented. See the image below: The component of circular doubly list node: info : It contains the actual information next : This field points to the next node in the list prev  : This field points to the previous node in the list Now we see how the circular doubly link list is represented. See the image below: The component of circular doubly link list are: START  pointer points to the first node of the lis

Insert node at last position in doubly link list

Now we will see how to insert a new node at the last position of doubly link list. Algorithm for insertion at last position in doubly link list: In this algorithm, START is pointer to first node of list and PTR is the node to be inserted at last. The steps are as follows: Create new node PTR Set the info field of PTR Set PTR->NEXT = NULL If list is empty i.e. START == NULL Set START = PTR Set PTR->PREV = NULL Else Traverse the list for last node into TEMP pointer Set PTR->PREV = TEMP Set TEMP->NEXT = PTR End If;     Function to insert node at last position in doubly link list: void insertAtLast(NODE **start, int info){ NODE *ptr = (NODE*) malloc(sizeof(NODE)); NODE *temp = *start; ptr->info = info; ptr->next = NULL; if(*start == NULL){ *start = ptr; ptr->prev = NULL; } else{ while(temp->next != NULL){ temp = temp->next; } ptr->prev = temp; temp->next = ptr; } }   Program to insert at last position in the do