Skip to main content

Array implementation of Stack


Here we see how to implement the stack using C array data type:

#include <stdio.h>
#define MAX 5 //maximum size of stack

int top = -1; //top of stack
int stack[MAX]; // stack

int pop();
void push(int);
void display(); // for displaying stack elements

int main(){
 push(1); 
 push(3);
 push(5); display();
 pop(); 
 pop(); display();
 pop(); 
 pop();
 return 0;
}

void push(int item){
 if(top == MAX-1){ //check for overflow
  printf("Stack overflow\n");
 }
 else{
  stack[++top] = item;
  printf("Pushed item = %d\n", item);
 }
}

int pop(){
 if(top == -1){ // check for underflow
  printf("Stack underflow\n");
 }
 else{
  return stack[top--];
 }
}

void display(){
 printf("The stack elements are: ");
 for( int i = 0; i <= top; i++){
  printf("%d ", stack[i]);
 }
 printf("\n");
}

Output:

Pushed item = 1
Pushed item = 3
Pushed item = 5
The stack elements are: 1 3 5
The stack elements are: 1
Stack underflow 


Comments

Popular posts from this blog

Prefix to Infix Conversion

With a given Prefix Expression, we will see how to convert Prefix Expression into Infix Expression using stack.   Algorithm to convert Prefix Expression to Infix Expression: In this algorithm, we will use stack to store operands during the conversion. The step are as follows: Read the prefix string While the end of prefix string scanned from right to left symb = the current character If symb is an operator poped_sym1 = pop the stack poped_sym2 = pop the stack concat the string  STR = ( poped_sym1 )+ ( operator )+( poped_sym2 ) push the string STR into stack Else push the operand symb into stack End If End While infix_str = pop the stack   Function to convert Prefix Expression to Infix Expression: void prefix_to_infix(char prefix[], char infix[]){ char op[2]; //operator string char poped1[MAX]; char poped2[MAX]; char temp[MAX]; int i = strlen(prefix); op[1] = '\0'; while(--i != -1){ if(prefix[i] == ' '){ continue; } if(isoper

Circular Doubly Link List

Circular Doubly Link List is data structure which contains a list of node containing info part and links to the next and previous node. In CDLL, last node's next pointer points to the first node and first node's previous pointer points to last node of the list. This  makes traversal in both direction of CDLL.  Before going to discuss the operation on circular doubly link list, we will first see the basic structure of the data type and see how it could be represented in c programming. First we will see the how the node or element of circular doubly link list is represented. See the image below: The component of circular doubly list node: info : It contains the actual information next : This field points to the next node in the list prev  : This field points to the previous node in the list Now we see how the circular doubly link list is represented. See the image below: The component of circular doubly link list are: START  pointer points to the first node of the lis

Insert node at last position in doubly link list

Now we will see how to insert a new node at the last position of doubly link list. Algorithm for insertion at last position in doubly link list: In this algorithm, START is pointer to first node of list and PTR is the node to be inserted at last. The steps are as follows: Create new node PTR Set the info field of PTR Set PTR->NEXT = NULL If list is empty i.e. START == NULL Set START = PTR Set PTR->PREV = NULL Else Traverse the list for last node into TEMP pointer Set PTR->PREV = TEMP Set TEMP->NEXT = PTR End If;     Function to insert node at last position in doubly link list: void insertAtLast(NODE **start, int info){ NODE *ptr = (NODE*) malloc(sizeof(NODE)); NODE *temp = *start; ptr->info = info; ptr->next = NULL; if(*start == NULL){ *start = ptr; ptr->prev = NULL; } else{ while(temp->next != NULL){ temp = temp->next; } ptr->prev = temp; temp->next = ptr; } }   Program to insert at last position in the do